Algal diversity in coalfield areas of Talcher with response to physico-chemical parameters
DOI:
https://doi.org/10.5281/zenodo.18381336Keywords:
Algal diversity, Coal mining, Talcher coalfield, Physico-chemical parameters, Water qualityAbstract
The Talcher coalfield region in Angul district, Odisha, India, offers a unique ecological setting shaped by intensive coal mining activities, making it an important site for studying algal diversity. Spanning approximately 1,800 square kilometers, the area exhibits a range of physico-chemical parameters that significantly influence its aquatic ecosystems. This study investigates the algal diversity in the coalfield and examines its relationship with key physico-chemical factors. A total of 35 algal species were recorded, encompassing 21 genera, 18 families, and 15 orders across five major algal divisions. The division Bacillariophyta (diatoms) was the most dominant, with 19 species, followed by Charophyta (6 species), Cyanophyta (4 species), Chlorophyta (3 species), and Euglenophyta (3 species). The results revealed that temperature, pH, and dissolved oxygen (DO) are the primary environmental factors influencing algal diversity in the Talcher coalfield. Moreover, Canonical Correspondence Analysis (CCA) revealed that temperature, pH, and dissolved oxygen are key environmental drivers influencing algal diversity in the Talcher coalfield area. The study concludes that coal mining environments, provide favourable microhabitats for diverse algal communities despite of anthropogenic activity. The observed algal diversity reflects a complex interaction between natural conditions and mining-induced changes. These findings emphasize the need for sustained ecological monitoring and mitigation strategies to manage the environmental impacts of coal mining. The dataset of our study provides a valuable baseline snapshot of algal diversity in mining-impacted habitats of coalfield areas of Talcher.
References
Agrawal, A. K., & Nikhil, K. (2013). Algal Distribution Pattern and Quality of Water in the Different Aquatic Environment of District Dhanbad, Jharkhand. International Journal of Science and Research, 4(2), 358-363.
Aguilar, A. G., Schüth, C., Castrejon, U. R., Luna, B. N., & Muñoz, A. S. (2023). Statistical Analysis and Assessment of Water Quality Parameters in Relation to the Use of Algae as Bioindicators in Contaminated Reservoirs. Water, Air, & Soil Pollution, 234(2), 98.
Akter, L., Ullah, M. A., Hossain, M. B., Karmaker, A. R., Hossain, M. S., Albeshr, M. F., & Arai, T. J. B. (2022). Diversity and assemblage of harmful algae in homestead fish ponds in a tropical coastal area. 11(9), 1335.
Begum, N., Narayana, J., & Sayeswara, H. (2010). Phytoplankton diversity and pollution indicators of Bathi pond near Davangere-A seasonal study. Environment conservation journal, 11(3), 75-80.
Behera, C., Dash, S. R., Pradhan, B., Jena, M., & Adhikary, S. P. (2020). Algal diversity of Ansupa lake, Odisha, India. Nelumbo, 62.
Behera, C., Dash, S. R., Pradhan, B., Jena, M., & Hembram, P. (2021). Coccoid green algae genus Coelastrum and some desmids from coastal region of Odisha, India. The Journal of the Indian Botanical Society, 101(03), 182-188.
Behera, C., Pradhan, B., Panda, R. R., Nayak, R., Nayak, S., & Jena, M. (2021). Algal diversity of saltpans, Humma (Ganjam), Odisha, India. The Journal of Indian Botanical Society, 101(1and2), 107-120.
Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification, enumeration and use as bioindicators. John Wiley & Sons.
Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2, 161-173.
Bhuyan, P. P., Behera, S. K., Bhakta, S., Pradhan, B., Jena, M., Hansdah, B., & Bastia, A. K. (2022). Subaerial algal flora of Similipal biosphere reserve, Odisha, India. Journal of the Indian Botanical Society, 1-12.
Bhuyan, P. P., Pradhan, B., Nayak, R., Jena, M., Hansdah, B., & Bastia, A. K. (2023). Taxonomic Enumeration of Subaerial Cyanobacterial Flora of Similipal Biosphere Reserve, Odisha, India. Ecology, Environment and Conservation, 29(January Suppl. Issue), pp. (S70-S80).
Bilgin, N., Copur, H., & Balci, C. (2013). Mechanical excavation in mining and civil industries. CRC press.
Butterwick, C., Heaney, S., & Talling, J. (2005). Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50(2), 291-300.
Chapman, R. L. (2013). Algae: the world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change, 18, 5-12.
Chasapis, C. T., Peana, M., & Bekiari, V. (2022). Structural identification of metalloproteomes in marine diatoms, an efficient algae model in toxic metals bioremediation. Molecules, 27(2), 378.
Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource technology, 102(2), 1649-1655.
Das, S., Das, S., & Ghangrekar, M. M. (2022). Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro‐and microphytes. Journal of Basic Microbiology, 62(3-4), 260-278.
Dash, S., Pradhan, B., & Behera, C. (2020). Algal Diversity of Kanjiahata Lake, Nandankanan, Odisha, India. J Indian Bot Soc, 99.
Dash, S. R., Pradhan, B., Behera, C., Nayak, R., & Jena, M. (2021). Algal Flora of Tampara Lake, Chhatrapur, Odisha, India. The Journal of Indian Botanical Society, 101(1and2), 1-15.
Ebrahimzadeh, G., Alimohammadi, M., Kahkah, M. R. R., Mahvi, A. H. J. J. o. E. H. S., & Engineering. (2021). Relationship between algae diversity and water quality-a case study: Chah Niemeh reservoir Southeast of Iran. 19, 437-443.
George, B., Kumar, J. N., & Kumar, R. N. (2012). Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. The Egyptian Journal of Aquatic Research, 38(3), 157-170.
Gorde, S., & Jadhav, M. (2013). Assessment of water quality parameters: a review. J Eng Res Appl, 3(6), 2029-2035.
Goswami, M., Das, T., Kumar, S., & Mishra, A. (2018). Impact of physico-chemical parameters on primary productivity of Lake Nainital. Journal of Entomology and Zoology Studies, 6(4), 647-652.
Holzinger, A., Allen, M. C., & Deheyn, D. D. (2016). Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. Journal of Photochemistry and Photobiology B: Biology, 162, 412-420.
Hosmani, S. P. (2013). Fresh Water Algae as Indicators of Water Quality. Universal Journal of Environmental Research & Technology, 3(4).
Igbinosa, E., & Okoh, A. (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. International Journal of Environmental Science & Technology, 6, 175-182.
Kanu, I., & Achi, O. (2011). Industrial effluents and their impact on water quality of receiving rivers in Nigeria. Journal of applied technology in environmental sanitation, 1(1), 75-86.
Karjee, P. K., Nayak, R., Pradhan, B., Behera, A. K., Parida, S., & Jena, M. (2022). Algal Vegetation of Reservoirs of Ganjam, Odisha, India. Ecology, Environment and Conservation, 28(4), 2099-2109.
Kaur, I., & Bhatnagar, A. (2002). Algae-dependent bioremediation of hazardous wastes. Progress in industrial microbiology, 36, 457-516.
Kensa, V. M. (2011). Bioremediation-an overview. I Control Pollution, 27(2), 161-168.
Kumar, A., Bisht, B., Joshi, V., & Dhewa, T. (2011). Review on bioremediation of polluted environment: a management tool. International journal of environmental sciences, 1(6), 1079-1093.
Kumar, N. (2014). Algal Biodiversity in Coalfield Areas–A Critical Review. International Journal of Engineering and Technical Research, 2(6), 176-178.
Kumar, V., Shahi, S., & Singh, S. (2018). Bioremediation: an eco-sustainable approach for restoration of contaminated sites. Microbial bioprospecting for sustainable development, 115-136.
Maharana, S., Pradhan, B., Jena, M., & Misra, M. K. (2019). Diversity of phytoplankton in Chilika lagoon, Odisha, India. Environ Ecol, 37.
Mishra, N., & Das, N. (2017). Coal mining and local environment: A study in Talcher coalfield of India. Air, Soil and Water Research, 10, 1178622117728913.
Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). Algal biodiversity. Phycologia, 35(4), 308-326.
O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful algae, 14, 313-334.
Olson, P., Reardon, K., & Pilon‐Smits, E. (2003). Ecology of rhizosphere bioremediation. Phytoremediation: transformation and control of contaminants, 317-353.
Pradhan, B., Maharana, S., Bhakta, S., & Jena, M. (2022). Marine phytoplankton diversity of Odisha coast, India with special reference to new record of diatoms and dinoflagellates. Vegetos, 35(2), 330-344.
Priya, A., Jalil, A., Vadivel, S., Dutta, K., Rajendran, S., Fujii, M., & Soto-Moscoso, M. (2022). Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. Chemosphere, 305, 135375.
Ras, M., Steyer, J.-P., & Bernard, O. (2013). Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in environmental science and bio/technology, 12(2), 153-164.
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., & Naveed, M. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International journal of molecular sciences, 22(19), 10529.
Saini, V., Gupta, R. P., & Arora, M. K. (2016). Environmental impact studies in coalfields in India: a case study from Jharia coal-field. Renewable and sustainable energy reviews, 53, 1222-1239.
Schindler, D. E., & Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98(2), 177-189.
Sen, S., Zipper, C. E., Wynne, R. H., & Donovan, P. F. (2012). Identifying revegetated mines as disturbance/recovery trajectories using an interannual Landsat chronosequence. Photogrammetric Engineering & Remote Sensing, 78(3), 223-235.
Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace metals in the environment-new approaches and recent advances. IntechOpen.
sharma, M., Trıpathı, S., Chauhan, G., Karkwal, H., & Varma, A. (2009). Microbial Diversity and Its Molecular Aspects. A Textbook of Molecular Biotechnology, 11.
Sharma, R. C., Singh, N., & Chauhan, A. (2016). The influence of physico-chemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: a case study. The Egyptian Journal of Aquatic Research, 42(1), 11-21.
Siddharth, S., Jamal, A., Dhar, B., & Shukla, R. (2002). Acid-base accounting: a geochemical tool for management of acid drainage in coal mines. Mine Water and the Environment, 21(3), 106-110.
Sila, O. N. a. (2019). Physico-chemical and bacteriological quality of water sources in rural settings, a case study of Kenya, Africa. Scientific African, 2, e00018.
Sina, I., & Zulkarnaen, I. (2019). Margalef Index, Simpson Index and Shannon-Weaiver Index calculation for diversity and abudance of beetle in tropical forest. Statmat: jurnal statistika dan matematika, 1(2).
Singh, D., & Nikhil, K. (2014). Algae for lipid as renewable energy source in coal mining area: A critical review. International Journal of Engineering & Technical Research (IJETR), 2(5), 172-174.
Singh, S., Kate, B. N., & Banerjee, U. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical reviews in biotechnology, 25(3), 73-95.
Singh, S. K., Kaur, R., Bansal, A., Kapur, S., & Sundaram, S. (2020). Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds. In Biotechnological Production of Bioactive Compounds (pp. 221-259). Elsevier.
Smith, J. E., Price, N. N., Nelson, C. E., & Haas, A. F. (2013). Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Marine Biology, 160, 2437-2447.
Sood, A., Renuka, N., Prasanna, R., & Ahluwalia, A. S. (2015). Cyanobacteria as potential options for wastewater treatment. Phytoremediation: Management of Environmental Contaminants, Volume 2, 83-93.
Soria-Mercado, I. E., Villarreal-Gómez, L. J., Rivas, G. G., & Sánchez, N. E. A. (2012). Bioactive compounds from bacteria associated to marine algae. Biotechnology-Molecular Studies and Novel Applications for Improved Quality of Human Life. Croatia, 25-44.
Tiwary, R. (2001). Environmental impact of coal mining on water regime and its management. Water, Air, and Soil Pollution, 132, 185-199.
Touliabah, H. E.-S., El-Sheekh, M. M., Ismail, M. M., & El-Kassas, H. (2022). A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Molecules, 27(3), 1141.
Vadlamani, A., Viamajala, S., Pendyala, B., & Varanasi, S. (2017). Cultivation of microalgae at extreme alkaline pH conditions: a novel approach for biofuel production. ACS Sustainable Chemistry & Engineering, 5(8), 7284-7294.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Hydrobiological Research

This work is licensed under a Creative Commons Attribution 4.0 International License.

